Measuring Red Blood Cell Velocity with a Keyhole Tracking Algorithm
نویسندگان
چکیده
A tracking algorithm is proposed to measure the velocity of red blood cells traveling through microvessels of tumors growing in skin flaps implanted on mice. The tracking is based on a keyhole model that describes the probable movement of a segmented cell between contiguous frames in a video sequence. When a history of movements exists, past, present and a predicted landing position define two regions of probability with a keyhole shape. This keyhole is used to determine if cells in contiguous frames should be linked to form tracks. Pre-processing segments cells from background and post-processing joins tracks and discards links that could have been formed due to noise or uncertainty. The algorithm presents several advantages over traditional methods such as kymographs or particle image velocimetry: manual intervention is restricted to the thresholding, several vessels can be analyzed simultaneously, algorithm is robust to noise and a wealth of statistical measures can be obtained. Two tumors with different geometries were analyzed; average velocities were 211±136 [μm/s] (mean±std) with a range 15.9-797 [μm/s], and 89±62 [μm/s] with a range 5.5-300 [μm/s] respectively, which are consistent with previous results in the literature. Keywords— Red Blood Cell Tracking, Blood Velocity
منابع مشابه
Measuring the velocity of fluorescently labelled red blood cells with a keyhole tracking algorithm.
In this paper we propose a tracking algorithm to measure the velocity of fluorescently labelled red blood cells travelling through microvessels of tumours, growing in dorsal skin flap window chambers, implanted on mice. Preprocessing removed noise and artefacts from the images and then segmented cells from background. The tracking algorithm is based on a 'keyhole' model that describes the proba...
متن کاملmeasuring viscoelastic properties of Red Blood Cell using optical tweezers
Efforts have been made to study the behavior of complex materials in micrometer dimensions with various techniques. One of these methods is the use of optical tweezers for biophysical applications. Red blood cells, as the most abundant blood-forming cells, play an important role in the life of living organisms, and their unique mechanical properties are important. In this report, the study of s...
متن کاملMicroflow of fluorescently labelled red blood cells in tumours expressing single isoforms of VEGF and their response to vascular targeting agents.
In this work we studied the functional differences between the microcirculation of murine tumours that express only single isoforms of vascular endothelial growth factor-A (VEGF), namely VEGF120 and VEGF188, and the effect of VEGF receptor tyrosine kinase (VEGF-R TK) inhibition on their functional response to the vascular disrupting agent, combretastatin A-4 phosphate (CA-4-P), using measuremen...
متن کاملMultiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملA New Maximum Power Point Tracking Method for PEM Fuel Cells Based On Water Cycle Algorithm
Maximum Power Point (MPP) tracker has an important role in the performance of fuel cell (FC) systems improvement. Tow parameters which have effect on the Fuel cell output power are temperature and membrane water. So contents make the MPP change by with variations in each parameter. In this paper, a new maximum power point tracking (MPPT) method for Proton Exchange Membrane (PEM) fuel cell is pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015